You may also like

problem icon


How many triangles can you make on the 3 by 3 pegboard?

problem icon


Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

problem icon

Tessellating Triangles

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Egyptian Rope

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Randley School sent in four good solutions.

Naziya said:

I found out that I could make a square with three sections at each side. I also found out that I could make three different triangles: an isoscelos triangle $2$ along the bottom and $5$ up each side, a right angled which had $3$ along the bottom, $4$ up one side and $5$ on the other side and an equilateral with all three sides the same. I could also make two different rectangles, like this: $5, 1, 5, 1$ or $4, 2, 4, 2$.

Matthew and Jordan said:

I made three lots of triangles and I made an isosceles triangle with $2, 5$ and $5$. Then I made an equilateral triangle with three lots of $4$. The last triangle was a right angled triangle with $5, 4$ and $3$. I made two rectangles one had $4, 2, 4, 2$. The last rectangle had $5, 1, 5, 1$. The square had $3, 3, 3, 3$. Then we made a hexagon and it had $2, 2, 2, 2, 2, 2$.

Ffion said:

I made a square with three sections at each side. I made two rectangles one of them was $5$ across and $2$ down, the second one was $4$ across and $2$ down. I made three triangles: a right angled triangle which has $3$ across, $4$ up one side and $5$ on the other side, the isosceles triangle which has $2$ across and $5$ up, the other triangle was the equilateral triangle with all the sides had $4$. I made a hexagon which has $12$ sides.

I'm sure there'll be some rethinking of that last bit - do you know the name of a $12$-sided shape?

Well done everyone.