You may also like

problem icon

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

problem icon

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

problem icon

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

Big Fibonacci

Stage: 4 Short Challenge Level: Challenge Level:1

Let the first two terms of the sequence be $a$ and $b$ respectively.

Then the next three terms are $a+b$, $a+2b$, $2a+3b$. So $2a+3b = 2004$.

For $a$ to be as large as possible, we need $b$ to be as small as possible, consistent with both being positive integers.

If $b=1$ then $2a=2001$, but $a$ is an integer, so $b\not=1$.

However, if $b=2$ then $2a=1998$, so the maximum possible value of $a$ is $999$, giving us the first five terms:
999, 2, 1001, 1003, 2004