Starting with two basic vector steps, which destinations can you reach on a vector walk?

Use functions to create minimalist versions of works of art.

Can you deduce the familiar properties of the sine and cosine functions starting from these three different mathematical representations?

What on earth are polar coordinates, and why would you want to use them?

Make a functional window display which will both satisfy the manager and make sense to the shoppers

Explore the properties of these two fascinating functions using trigonometry as a guide.

Can you work out what simple structures have been dressed up in these advanced mathematical representations?

Charlie likes to go for walks around a square park, while Alison likes to cut across diagonally. Can you find relationships between the vectors they walk along?