Bir Kafle, Salah Eddine Rihane and Alain Togbé
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 1, Pages 161—170
DOI: 10.7546/nntdm.2021.27.1.161170
Download full paper: PDF, 215 Kb
Details
Authors and affiliations
Bir Kafle
Department of Mathematics, Statistics, and Computer Science
Purdue University Northwest
1401 S, U.S. 421, Westville IN 46391, USA
Salah Eddine Rihane
Department of Mathematics and Computer Science
Abdelhafid Boussouf University
Mila 43000, Algeria
Alain Togbé
Department of Mathematics and Computer Science
Abdelhafid Boussouf University
Mila 43000, Algeria
Abstract
In this paper, we determine all the Mersenne numbers which are in the sequences of Padovan and Perrin numbers, respectively.
Keywords
 Padovan numbers
 Perrin numbers
 Mersenne numbers
 Linear form in logarithms
 Reduction method
2010 Mathematics Subject Classification

 11B39
 11D45
 11J86
References
 Baker, A., & Davenport, H. (1969). The equations 3×2 − 2 = y2 and 8×2 − 7 = z2. The Quarterly Journal of Mathematics, Oxford, Ser. (2), 20, 129–137.
 Bravo, J. J., & Gomez, C. A. (2020). Mersenne ´ kFibonacci numbers. Glasnik Matematicki, 71, 307–319.
 Bravo, J. J., & Herrera, J. L. (2020). Fermat kFibonacci and kLucas numbers.
Mathematica Bohemica, 145(1), 19–32.  Catarino, P., Campos, H., & Vasco, P. (2016). On the Mersenne sequence. Annales Mathematicae et Informaticae, 46, 37–53.
 Dujella, A., & Petho, A. (1998). A generalization of a theorem of Baker and Davenport. The Quarterly Journal of Mathematics, Oxford, Ser. (2), 49(195), 291–306.
 Goy, T. (2018). On new identities for Mersenne numbers. Applied Mathematics ENotes, 18, 100–105.
 Great Internet Mersenne Prime Search (GIMPS), Finding world record primes since 1996, published electronically at https://www.mersenne.org/.
 Guzman, S. S., & Luca, F. (2014). Linear combinations of factorials and Sunits in a binary recurrence sequences. Annales mathematiques du Quebec, 38, 169–188.
 Krızek, M., Luca, F., & Somer, L. (2001). 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, SpringerVerlag, New York.
 Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II. Izvestiya: Mathematics, 64(6), 1217—1269.
 Rihane, S. E., Adegbindin, C. A., & Togbé, A. (2020). Fermat Padovan and Perrin numbers. Journal of Integer Sequences, 23(6), Article 20.6.2.
 Shannon, A. G. (1983). Intersections of second order linear recursive sequences. The Fibonacci Quarterly, 21, 6–12.
 Sloane, N. J. A. The Online Encyclopedia of Integer Sequences, published electronically at https://oeis.org/.
 Stein, S. K. (1962). The intersection of Fibonacci sequences. Michigan Mathematics Journal, 9, 399–402.
 Waldshmidt, M. (2000). Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables, SpringerVerlag, Berlin Heidelberg.
 De Weger, B. M. M. (1987). Algorithms for Diophantine Equations, PhD thesis, University of Leiden.
Related papers
Cite this paper
Kafle, B., Rihane, S. E., & Togbé, A. (2021). A note on Mersenne Padovan and Perrin numbers. Notes on Number Theory and Discrete Mathematics, 27(1), 161170, doi: 10.7546/nntdm.2021.27.1.161170.