#### You may also like ### Forgotten Number

I have forgotten the number of the combination of the lock on my briefcase. I did have a method for remembering it... ### Powerful Factorial

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!? ### Trailing Zeros

How many zeros does 50! have at the end?

# Factoring Factorials

##### Age 11 to 14 Challenge Level:

My name is Talei and I am a pupil from Poltair Community School and Sports College in St Austell, in Cornwall.

The highest power of 11 which will divide exactly into 1000! is 11 98

I worked this out by:-

• deciding that there are 90 multiples of 11 from 11 to 990 multiplied within 1000!
• in a fraction with all the factors of 1000! as the numerator and with a denominator of as many elevens as possible to cancel out the multiples of 11 in the numerator, you would cancel out 90 elevens from every multiple of 11, e.g. 22/11= 2, and a further eight elevens from each multiple which could be divided by eleven twice, e.g. 11 x 11, 22 x 11, 33 x 11 up to 88 x 11
• and turning each eleven into a power, gives my above conclusion.
• This would definitely divide exactly into 1000!

Well done Talei! Congratulations also to Bethany, Emma and Monica of Hethersett High School and Soh Yong Sheng, of Raffles Institution, Singapore.