You may also like

problem icon

Do Unto Caesar

At the beginning of the night three poker players; Alan, Bernie and Craig had money in the ratios 7 : 6 : 5. At the end of the night the ratio was 6 : 5 : 4. One of them won $1 200. What were the assets of the players at the beginning of the evening?

problem icon

Plutarch's Boxes

According to Plutarch, the Greeks found all the rectangles with integer sides, whose areas are equal to their perimeters. Can you find them? What rectangular boxes, with integer sides, have their surface areas equal to their volumes?

problem icon


Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.


Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Here is the solution from Christiane Eaves, Alicia Maltby, Kathy Lam, Rachael Evans andFiona Conroy (Y10) The Mount School,York:
The total surface area of the cube is $ 6r^2. $ The area shaded on one face is $ \frac{\pi r^2}{4}$ so the total shaded area is $ \frac{3\pi r^2}{4}.$

The fraction of the total surface area shaded is thus $\frac{3\pi r^2}{4}$ divided by $6r^2$ which is: $$\frac{3\pi r^2}{4} \times\frac{1}{6r^2}= \frac{\pi}{8}$$