You may also like

Upsetting Pitagoras

Find the smallest integer solution to the equation 1/x^2 + 1/y^2 = 1/z^2

Rudolff's Problem

A group of 20 people pay a total of £20 to see an exhibition. The admission price is £3 for men, £2 for women and 50p for children. How many men, women and children are there in the group?

Euler's Squares

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Never Prime

Age 14 to 16
Challenge Level

Take any two digit number, reverse its digits, and subtract the smaller number from the larger. For example $$42-24=18$$ I've tried this a few times and I never seem to end up with a prime number. Try some examples of your own. Do you ever end up with a prime number?

Can you prove that you will never end up with a prime?

What happens when I do the same with a three digit number?

What about a four digit number?

What about a five, six, seven, ... $n$ digit number?

Can you justify your findings?