This was a tricky problem but we
received some detailed solutions - well done.
Frank, Noah and Ben from Stanford Junior
School said:
If the number of teeth on one cog is the multiple of teeth on the
other cog it will not work. So if the teeth on one cog is 5 and on
the other cog is ten teeth it will not work.
Also the number you times the teeth to make the number of teeth on
the other cog that is the number of spaces it goes into.
cog $1$: $5$ teeth
cog $2$: $10$ teeth
spaces gone into = $2$
$5 \times 2 =10$
Sean, Ben, Lane and Jonathan from
Meridian Primary School told us about some of the things they
noticed:
First of all, all consecutive numbers will work because the smaller
will go round once but won't make it to the start point by one so
eventually it will make it the whole way round (e.g. $4$,
$5$).
Two even numbers will never ever go together because they are
multiples of two so they will keep going in a rut.
If two odd numbers are factors of two consecutive numbers they will
work because they'll still act as consecutive numbers would e.g.
$5$ and $7$:
$5 \times 3 = 15$ and $7 \times 2 = 14$
$11$ works with all numbers.
Pranjal from Garden International
School, Kuala Lumpur took these ideas a bit further and
wrote:
There are three different ways of determining which pairs of cogs
work and which don't:
1. Find consecutive numbers from $4$ to $12$ and pair them up. The
solutions that are in this category are as follows:
$4$-$5$, $5$-$6$, $6$-$7$, $7$-$8$, $8$-$9$, $9$-$10$, $10$-$11$
and $11$-$12$
2. Make pairs of odd numbers. The pairs are:
$5$-$7$, $5$-$9$, $5$-$11$, $7$-$9$, $7$-$11$ and $9$-$11$
3. The last, and the category that most numbers fall into, is the
HCF (highest common factor) category. This category also includes
the pairs in the previous category. The rule is that the numbers
have to have a HCF of $1$. All the numbers that work are in this
category too.
ANSWER
The pairs that go together are:
$4$-$5$, $5$-$6$, $6$-$7$, $7$-$8$, $8$-$9$, $9$-$10$, $10$-$11$,
$11$-$12$, $5$-$7$, $5$-$9$, $5$-$11$, $7$-$9$, $7$-$11$, $6$-$11$,
$7$-$10$, $5$-$8$, $9$-$11$, $4$-$7$, $4$-$9$, $4$-$11$, $5$-$12$,
$6$-$11$, $8$-$11$
Note: Even-Even numbers can never go together, no matter what the
case. This is because their one factor is definitely $2$, if not
the highest. Some particular odd-even numbers can't go together
either. Examples are $5$-$10$ and $9$-$12$.The rules are that there
cannot be a pair which consists of numbers which are both divisible
by a certain number other than one or that one number is divisible
by the other number in the pair.
QUESTION
We had to ask ourselves a question as we progressed in the
solution. The question was that which pairs work and why, and is
there a pattern between the pairs that work.
Jong Woong, Jayme, Denise and Mariana,
also from Garden International School, have reasoned through this
problem very carefully. They told us how they worked to solve the
problem. First, they said they wrote down all the pairs possible
using the $4$, $5$, $6$, $7$, $8$, $10$, $11$ and $12$
cogs:
($4$, $5$) ($4$, $6$) ($4$, $7$) ($4$, $8$) ($4$, $10$) ($4$, $11$)
($4$, $12$)
($5$, $6$) ($5$, $7$) ($5$, $8$) ($5$, $10$) ($5$, $11$) ($5$,
$12$)
($6$, $7$) ($6$, $8$) ($6$, $10$) ($6$, $11$) ($6$, $12$)
($7$, $8$) ($7$, $10$) ($7$, $11$) ($7$, $12$)
($8$, $10$) ($8$, $11$) ($8$, $12$)
($10$, $11$) ($10$, $12$) ($11$, $12$)
Then they tried random cogs to see if
they worked and tried to find a pattern among them.
Pairs that work
($4$, $5$) ($4$, $7$) ($4$, $11$) ($5$, $6$) ($5$, $7$) ($5$, $11$)
($5$, $12$) ($6$, $7$) ($6$, $11$) ($7$, $8$) ($7$, $10$) ($7$,
$11$) ($7$, $12$) ($8$, $11$) ($10$, $11$) ($11$, $12$)
Pairs that don't work
($4$, $6$) ($4$, $8$) ($4$, $10$) ($4$, $12$) ($5$, $8$) ($5$,
$10$) ($6$, $8$) ($6$, $10$) ($6$, $12$) ($8$, $10$) ($8$, $12$)
($10$, $12$)
They asked themselves questions:
Why does this happen?
Is there a pattern?
They then wrote:
We found out that that the pairs that have a HCF (highest common
factor) of $1$ work.
Reason
This only happens if the highest common factor is one, because the
cogs get filled in by the highest common factor. For example, the
pair ($4$, $6$) doesn't work because the HCM is $2$ which means
that the space will be filled in by '$2$'.
Well done to all of you who sent a solution to
this problem. I wonder whether anyone else can find a way to
explain why cogs will only work if they have a HCF of $1$?