Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Polygon Walk

Draw the triangle pointing right such that the rightmost vertex is at $\mathbf{i}$

The coordinates of a regular $n$-gon with a centred on the origin with a vertex at $(1,0)$ are

$$\left(\cos\left(\frac{2m\pi}{n}\right), \sin\left(\frac{2m\pi}{n}\right)\right)\, \text{ where }m=0, \dots, n-1$$

For a pentagon, the coordinates become

$$

(1, 0), \left(\frac{1}{4}\left(\sqrt{5}-1\right), \frac{1}{4}\left(\sqrt{10+2\sqrt{5}}\right)\right), \left(-\frac{1}{4}\left(\sqrt{5}+1\right), \frac{1}{4}\left(\sqrt{10-2\sqrt{5}}\right)\right)

$$

along with the mirror images in the $x$-axis.

This problem builds on GCSE vector work and provides a foundation for concepts met in the later Core A Level modules.

Or search by topic

Age 16 to 18

Challenge Level

- Problem
- Getting Started
- Student Solutions
- Teachers' Resources

Draw the triangle pointing right such that the rightmost vertex is at $\mathbf{i}$

The coordinates of a regular $n$-gon with a centred on the origin with a vertex at $(1,0)$ are

$$\left(\cos\left(\frac{2m\pi}{n}\right), \sin\left(\frac{2m\pi}{n}\right)\right)\, \text{ where }m=0, \dots, n-1$$

For a pentagon, the coordinates become

$$

(1, 0), \left(\frac{1}{4}\left(\sqrt{5}-1\right), \frac{1}{4}\left(\sqrt{10+2\sqrt{5}}\right)\right), \left(-\frac{1}{4}\left(\sqrt{5}+1\right), \frac{1}{4}\left(\sqrt{10-2\sqrt{5}}\right)\right)

$$

along with the mirror images in the $x$-axis.

This problem builds on GCSE vector work and provides a foundation for concepts met in the later Core A Level modules.