Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# The Square Hole

Thank-you to Clem, and to Marta & Brittany from MaST Community Charter School, and others who sent in solutions.

Seeing the image as a 'hole' surrounded by four rectangles, with each rectangle made from $2$ yellow (equilateral) and $2$ purple triangles.

The 'height' of the equilateral triangles is $\sqrt{3}$ divided by 2

So the dimensions of each rectangle are $1$ and $\sqrt{3}$

The side of the square hole is therefore $\sqrt{3} - 1$

## You may also like

Links to the University of Cambridge website
Links to the NRICH website Home page

Nurturing young mathematicians: teacher webinars

30 April (Primary), 1 May (Secondary)

30 April (Primary), 1 May (Secondary)

Or search by topic

Age 14 to 16

Challenge Level

- Problem
- Getting Started
- Student Solutions
- Teachers' Resources

Incidentally, did you notice that the yellow and purple triangles have the same area ? This doesn't require the particular case of one triangle being equilateral, any rectangle split into 4 areas by its diagonals will do.

More obvious now ?

Anyway back to the area of the Square Hole :

Thank-you to Clem, and to Marta & Brittany from MaST Community Charter School, and others who sent in solutions.

Seeing the image as a 'hole' surrounded by four rectangles, with each rectangle made from $2$ yellow (equilateral) and $2$ purple triangles.

The 'height' of the equilateral triangles is $\sqrt{3}$ divided by 2

So the dimensions of each rectangle are $1$ and $\sqrt{3}$

The side of the square hole is therefore $\sqrt{3} - 1$