Or search by topic
You only need elementary
trigonometry and scalar products
Given any rightangled triangle $\Delta ABC$ on a sphere of
unit radius, right angled at $A$, and with lengths of sides $a, b$
and $c$, then Pythagoras' Theorem in Spherical Geometry is $$\cos a
= \cos b \cos c.$$ Prove this result.
Find a triangle containing three right angles on the surface
of a sphere of unit radius. What are the lengths of the sides of
your triangle?
Use the Pythagoras' Theorem result above to prove that all
spherical triangles with three right angles on the unit sphere are
congruent to the one you found.

A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?
As a quadrilateral Q is deformed (keeping the edge lengths constnt) the diagonals and the angle X between them change. Prove that the area of Q is proportional to tanX.
Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.