You may also like

problem icon

Real(ly) Numbers

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

problem icon

Roots and Coefficients

If xyz = 1 and x+y+z =1/x + 1/y + 1/z show that at least one of these numbers must be 1. Now for the complexity! When are the other numbers real and when are they complex?

problem icon

Pair Squares

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

System Speak

Age 16 to 18 Challenge Level:

Take a look at the system of equations below:

$ab = 1$

$bc = 2$

$cd = 3$

$de = 4$

$ea = 6$

Can you find a set of values {a, b, c, d, e} that satisfy the system?
Can you find more than one?