Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Wobbler

For this question you need to know the centres of mass of the hemisphere and the cone and they are calculated below (you will need to fill in some of the intermediate steps for yourself). You can use the positions of the centres of mass given here.

In order to find the centre of mass of the hemisphere consider a cylindrical element of thickness $\delta x$ at distance $x$ from the centre of the base $O$. Then the radius of this slice is $\sqrt{a^2 - x^2}$. The position of the centre of mass is found by taking moments about $O$ and summing these moments for all the 'slices' by integrating: $${2\over 3}w\pi a^3\bar{x}= \int_0^a x \times w\pi (a^2-x^2)dx$$ which gives $$\bar{x}={3a\over 8}.$$ Similarly to find the centre of mass of the uniform cone, a distance $\bar{x}$ along the axis of symmetry from the vertex $V$, consider cylindrical elements of thickness $\delta x$ and radius ${ax\over h}$ (from similar triangles). The position of the centre of mass is again found by taking moments, in this case about $V$: $${1\over 3}w\pi a^2h\bar{x} = \int_0^h x\times w\pi {a^2x^2\over h^2}dx$$ which gives $$\bar{x}= {3h\over 4}.$$

Or search by topic

Age 16 to 18

Challenge Level

- Problem
- Getting Started
- Student Solutions
- Teachers' Resources

For this question you need to know the centres of mass of the hemisphere and the cone and they are calculated below (you will need to fill in some of the intermediate steps for yourself). You can use the positions of the centres of mass given here.

In order to find the centre of mass of the hemisphere consider a cylindrical element of thickness $\delta x$ at distance $x$ from the centre of the base $O$. Then the radius of this slice is $\sqrt{a^2 - x^2}$. The position of the centre of mass is found by taking moments about $O$ and summing these moments for all the 'slices' by integrating: $${2\over 3}w\pi a^3\bar{x}= \int_0^a x \times w\pi (a^2-x^2)dx$$ which gives $$\bar{x}={3a\over 8}.$$ Similarly to find the centre of mass of the uniform cone, a distance $\bar{x}$ along the axis of symmetry from the vertex $V$, consider cylindrical elements of thickness $\delta x$ and radius ${ax\over h}$ (from similar triangles). The position of the centre of mass is again found by taking moments, in this case about $V$: $${1\over 3}w\pi a^2h\bar{x} = \int_0^h x\times w\pi {a^2x^2\over h^2}dx$$ which gives $$\bar{x}= {3h\over 4}.$$