P is the midpoint of an edge of a cube and Q divides another edge
in the ratio 1 to 4. Find the ratio of the volumes of the two
pieces of the cube cut by a plane through PQ and a vertex.

Two circles of equal size intersect and the centre of each circle
is on the circumference of the other. What is the area of the
intersection? Now imagine that the diagram represents two spheres
of equal volume with the centre of each sphere on the surface of
the other. What is the volume of intersection?

Which of these infinitely deep vessels will eventually full up?

Reach for Polydron

Age 16 to 18 Challenge Level:

A tetrahedron has two identical equilateral triangles faces, of side length 1 unit. The other two faces are right angled isosceles triangles. Find the exact volume of the tetrahedron.