You may also like

problem icon

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

problem icon

Russian Cubes

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

problem icon

Picture Story

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Cosines Rule

Age 14 to 16 Challenge Level:

The Cosine Rule for $\Delta APC$ and $\Delta BPC$, where $\angle ACP=\theta$, gives $\begin{eqnarray} AP^2 &= AC^2+PC^2-2AC.PC \cos\theta,\cr PB^2&= BC^2+PC^2-2BC.PC \cos \theta. \end{eqnarray}$

Hence $\begin{eqnarray} \frac{BC^2+PC^2-PB^2}{ 2BC.PC}&= \frac{AC^2+PC^2-AP^2}{ 2AC.PC} = \cos\theta. \end{eqnarray}$
Hence, multiplying both sides by $2PC/AB$, we find that $\begin{eqnarray} {AP^2\over AC.AB} +{PC^2\over AB}\left({AC-BC\over BC.AC}\right) &= {PB^2\over AB.BC} +{AC-BC\over AB}.\end{eqnarray}$ As $AB+BC=AC$, we get the result: $\begin{eqnarray} {AP^2\over AB.AC}+{PC^2\over AC.BC} &= 1 + {PB^2\over AB.BC}. \end{eqnarray}$