#### You may also like ### How Many Solutions?

Find all the solutions to the this equation. ### Power Up

Show without recourse to any calculating aid that 7^{1/2} + 7^{1/3} + 7^{1/4} < 7 and 4^{1/2} + 4^{1/3} + 4^{1/4} > 4 . Sketch the graph of f(x) = x^{1/2} + x^{1/3} + x^{1/4} -x ### Sine Problem

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

# Quartics

##### Age 16 to 18Challenge Level

For this question you may like to use a computer graph drawing application or a graphic calculator. For $t = -1/2$, $1/2$ and $2$, sketch graphs of $y = [1 + (x - t)^2][1 + (x + t)^2]$.

Then try other values of the parameter $t$. You will see that these graphs have 'different shapes'. Suppose the parameter $t$ varies, then the general shape of the graph varies continuously with $t$.
You can get this far without calculus but you'll probably need calculus to find the turning points and to show that the graph always has a shape similar to the examples above and to find the values of $t$ at which there are transitions from one shape to another.