Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Rational Roots

Or search by topic

Age 16 to 18

Challenge Level

- Problem
- Getting Started
- Student Solutions

In this problem you are given that $a$, $b$ and $c$ are natural numbers. You have to show that if $\sqrt{a}+\sqrt{b}$ is rational then it is a natural number.

You could use the fact that if $\sqrt{a}+\sqrt{b}$ is rational then so is its square which means that $\sqrt ab $ is also rational. Knowing this the next step is to use $$\sqrt{a}(\sqrt{a}+\sqrt{b}) = a+\sqrt{ab}$$ to show that $\sqrt a$ is rational and to do likewise for $b$.

This is all you need because it has been proved that if $\sqrt a$ is rational then $a$ must be a square number.

Try to apply this method and then to extend it to three variables for the last part.