You may also like

problem icon

Cushion Ball

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

problem icon

Parabella

This is a beautiful result involving a parabola and parallels.

problem icon

Square Pair Circles

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Napoleon's Hat

Age 16 to 18 Challenge Level:

3 triangles

This is Sue Liu's solution proving that the triangle $PQR$ is equilateral whatever the position of the point $X$. Many congratulations Sue on all your excellent work.

Let $AX = x$ and $XB = y$ where we know that $AX + XB = AB$ (constant). Let the points $P, Q$ and $R$ be the centres (centroids) of the triangles $\Delta AXY, \Delta XZB$ and $\Delta ABC$ respectively. We use the fact that the medians of a triangle intersect at the centroid and this point divides the medians in the ratio one third to two thirds. If we set the point $A$ as the origin, then the points $P$, $Q$ and $R$, being the centroids of the equilateral triangles $AXY$, $XZB$ and $ABC$, have coordinates

$P = ({1\over 2}x, {\sqrt 3\over 6}x),$

$Q = (x + {1\over 2}y, {\sqrt 3\over 6}y)$, and

$R = ({1\over 2}(x + y), {-\sqrt 3\over 6}(x +y)).$

We now show that the lengths $PQ$, $QR$ and $RP$ are equal. $$\eqalign{ PQ^2 &= (x + {1\over 2}y - {1\over 2}x)^2 + ({\sqrt 3\over 6}y - {\sqrt 3\over 6}x)^2 \cr &= {x^2 + 2xy + y^2\over 4} + {y^2 - 2xy + x^2 \over 12} \cr &= {x^2 +xy +y^2 \over 3}.}$$ $$\eqalign { QR^2 &= ({1\over 2}(x + y) - (x + {1\over 2}y)^2 + (-{\sqrt 3\over 6}(x + y) - {\sqrt 3\over 6}y)^2 \cr &= {1\over 4}x^2 + {1\over 12}(x^2 + 4xy + 4y^2) \cr &= {x^2 +xy +y^2 \over 3}.}$$ $$\eqalign { RP^2 &= ({1\over 2}(x + y) - {1\over 2}x)^2 + (-{\sqrt3 \over 6}(x + y) - {\sqrt 3\over 6}x)^2 \cr &= {1\over 4}y^2 + {1\over 12}(4x^2 + 4xy + y^2) \cr &= {x^2 +xy +y^2 \over 3}.}$$ As $$PQ = QR = RP = \sqrt {{x^2 + xy + y^2 \over 3}}$$ for any $x$ it follows that $\Delta PQR$ is equilateral whatever the position of $X$.