You may also like

problem icon


A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

problem icon

Pie Cuts

Investigate the different ways of cutting a perfectly circular pie into equal pieces using exactly 3 cuts. The cuts have to be along chords of the circle (which might be diameters).

problem icon

Getting an Angle

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Parallelogram in the Middle

Stage: 3 Short Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3


The two angles marked $y ^{\circ}$ are equal because they are in an isosceles triangle. For the same reason, the angles $z^{\circ}$are equal. Since an exterior angle of a triangle is the sum of the two interior and opposite angles, it follows that $a=2y$ and $b=2z$. Now $a^{\circ}+ b^{\circ} = 180^{\circ}$ since they are the base angles of a parallelogram. So $2y + 2z = 180$ giving $y+z=90$. But, from the angle sum of a triangle $x+y+z=180$; hence $x =90$.

This problem is taken from the UKMT Mathematical Challenges.