You may also like

problem icon


Two semicircle sit on the diameter of a semicircle centre O of twice their radius. Lines through O divide the perimeter into two parts. What can you say about the lengths of these two parts?

problem icon


Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

problem icon

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Triangles Within Triangles

Stage: 4 Challenge Level: Challenge Level:1

Well done Tom, from Finham Park School, for clear use of notation :

Whenever you add 3 triangles ( as in $T_2$ ) together with a triangle one size smaller ( as in $T_1$ ), a new triangle is formed ( $T_4$ ) , twice the height of the triangle which was used three times ( $T_2$ ) .

The smaller triangle can be called $T_n$ , while the 3 triangles one size up can be called $T_{n+1}$.

One of the $T_{n+1 }$ joins with the $T_n $ to form a square of side length $n+1$ .

The two remaining $T_{n+1}$ fit to that square producing a large triangle that has a height twice that of $T_{n+1}$ ,

So the sum of all four triangles is the triangle $T_{2(n+1)}$

So $T_n $ + $3T_{n+1} =T_{2(n+1)}$ or, if you prefer, $T_{2n+2}$