You may also like

problem icon


A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

problem icon

Pie Cuts

Investigate the different ways of cutting a perfectly circular pie into equal pieces using exactly 3 cuts. The cuts have to be along chords of the circle (which might be diameters).

problem icon

Getting an Angle

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Integral Polygons

Stage: 3 Short Challenge Level: Challenge Level:2 Challenge Level:2
The greatest number of sides the polygon could have is $360$.

As each interior angle of the polygon is a whole number of degrees, the same must apply to each exterior angle. The sum of the exterior angles of a polygon is $360^{\circ}$ and so the greatest number of sides will be that of $360$-sided polygon in which each interior angle is $179^{\circ}$, thus making each exterior angle $1^{\circ}$.

This problem is taken from the UKMT Mathematical Challenges.