- Problem
- Getting Started
- Solution
- Teachers' Resources

If xyz = 1 and x+y+z =1/x + 1/y + 1/z show that at least one of these numbers must be 1. Now for the complexity! When are the other numbers real and when are they complex?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

Challenge Level

One method is to use the formula $$\sin z = {1\over 2i}(e^{iz} -
e^{-iz})$$ substitute $w=e^{iz}$ and solve for $w$.

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the
NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to
embed rich mathematical tasks into everyday classroom practice.

Copyright © 1997 - 2021. University of Cambridge.
All rights reserved.

NRICH is part of the family of activities in the Millennium Mathematics Project.

NRICH is part of the family of activities in the Millennium Mathematics Project.