#### You may also like ### Kissing Triangles

Determine the total shaded area of the 'kissing triangles'. ### Isosceles

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas. Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

# Dotty Triangles

##### Here is a synopsis of the solutions offered for the cases considered so far (i.e. it does not consider triangles that have non-horizontal bases):

The smallest triangle it is possibkle to draw has a base of 1 unit and a height of 1 unit. So the smallest area is $\frac{1}{2}$ sq. unit.

There are an infinite number of triangles that can be drawn with these diagonals (see the problem "Shear Magic" )

There are two ways of creating a triangle of area 1 sq and with a horizontal base:

Base 1 unit; height 2 units
or
Base 2 units and height 1 unit, again

For an area of 2 sq units there are three families of triangles with a hoirizontal base::

Base 1 unit and height 4 units
or
Base 2 units and height 2 units
or
Base 4 units and height 1 unit

For each family there are an infinite number of triangles