You may also like

problem icon

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

problem icon

Growing

Which is larger: (a) 1.000001^{1000000} or 2? (b) 100^{300} or 300! (i.e.factorial 300)

problem icon

Climbing Powers

$2\wedge 3\wedge 4$ could be $(2^3)^4$ or $2^{(3^4)}$. Does it make any difference? For both definitions, which is bigger: $r\wedge r\wedge r\wedge r\dots$ where the powers of $r$ go on for ever, or $(r^r)^r$, where $r$ is $\sqrt{2}$?

Sums of Squares

Age 16 to 18 Challenge Level:

This is a problem by Lewis Carroll and it revolves around some of the many interesting properties of sums of squares of integers. Is it always true that if you double the sum of two squares you get the sum of two squares? If so can you prove it? Here are some examples.

$2(5^2 + 3^2) = 2(25 + 9) = 68 = 64 + 4 = 8^2 + 2^2$
$2(7^2 + 4^2) = 2(49 + 16) = 130 = 121 + 9 = 11^2 + 3^2$


NOTES AND BACKGROUND

In his book Pillow-Problems Lewis Carroll extends this idea with a further problem. Prove that 3 times the sum of three squares is also the sum of 4 squares.

For further problems like this see Lewis Carroll's Games and Puzzles compiled by Edward Wakeling published by Dover Books ISBN 0-486-26922-1.