You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Charlie's Money

Age 11 to 14 Short
Challenge Level

Answer: £36


Splitting the money into parts
Charlie spent $\frac14$ of his money on a book:


He then gave $\frac23$ of his remaining money to his brother:


Then he had £9 left. So each of the equal parts is worth £9.

So he must have started off with 4$\times$ £9 = £36


Working backwards
After giving $\frac23$ of his money to his brother, Charlie has £9. So £9 is $\frac13$ of the amount of money Charlie had before he gave money to his brother.
So before he gave money to his brother, Charlie had £9$\times$3 = £27.

That means that after spending $\frac14$ of his money on a book, Charlie had £27. So £27 is $\frac34$ of the amount of money Charlie had before he bought the book.
So $\frac14$ of the amount of money Charlie had before he bought the book is £27$\div$3= £9.
So before he bought the book, Charlie had £9$\times$4 = £36.


Finding what fraction of his money Charlie has left
After he spent $\frac14$ of his money on a book, Charlie had $\frac34$ of his original money left.

Then he gave $\frac23$ of this $\frac34$ to his brother, leaving him with $\frac13$ of $\frac34$ of his original money.

$\frac13$ of $\frac34$ is equal to $\frac14$. So Charlie has $\frac14$ of his original money left.

So $\frac14$ of Charlie's original money is £9, so Charlie must have started off with 4$\times$ £9 = £36.



Using algebra
Let the amount of money Charlie had at the beginning be $c$.

So he spent $\frac14c$ on a book, which left him with $\frac34c$.

Then he have $\frac23$ of $\frac34c$ to his brother, leaving him with $\frac13$ of $\frac34c$, which was $ £9.$

So $\frac13\times\frac34c= £9\Rightarrow\frac14c= £9\Rightarrow c= £9\times4= £36.$

You can find more short problems, arranged by curriculum topic, in our short problems collection.