Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Cuboid Perimeters

**Answer**: $35\text{cm}^3$

Label the widths $a, b, c$

This perimeter is equal to $a+b+a+b=2a+2b$

This perimeter is equal to $2a+2c$

Similarly, the third perimeter will be equal to $2b+2c$

$$2a+2b=12\Rightarrow a+b=6\\

2a+2c=16\Rightarrow a+c=8\\

2b+2c=24\Rightarrow b + c = 12$$

**Solving by elimination**

$\quad\qquad a+b=\ 6\\

\underline{+\ \quad\quad a+c=\ 8\ \ }\\

\quad 2a+b+c=14$

$\quad 2a+b+c=14\\

\underline{-\ \quad\quad b+c=12\ \ }\\

\quad \qquad\quad \ 2a=\ 2$

$\therefore a=1$

So $b=5$, $c=7$, volume $=1\times5\times7=35\text{cm}^3$

**Solving by substitution**

$a+b=6\Rightarrow b=6-a\\

a+c=8\Rightarrow c=8-a\\

\begin{align}b + c = 12\Rightarrow &(6-a)+(8-a)=12\\

\Rightarrow &14-2a=12\\

\Rightarrow &a=1\end{align}$

So $b=5$, $c=7$, volume $=1\times5\times7=35\text{cm}^3$

**Adding all of the equations together**

$\quad\qquad a+b=\ 6\\

\qquad\quad a+c=\ 8\\

\underline{+\ \quad\quad b+c=12\ \ }\\

\ \ \ 2a+2b+2c=26$

$\therefore a+b+c=13$

$c=13-6=7$

$b=13-8=5$

$a=13-12=1$

So the volume is $1\times5\times7=35\text{cm}^3$.

## You may also like

### Picture Story

### There and Back

### Doesn't Add Up

Links to the University of Cambridge website
Links to the NRICH website Home page

Nurturing young mathematicians: teacher webinars

30 April (Primary), 1 May (Secondary)

30 April (Primary), 1 May (Secondary)

Or search by topic

Age 14 to 16

ShortChallenge Level

- Problem
- Solutions

Label the widths $a, b, c$

This perimeter is equal to $a+b+a+b=2a+2b$

This perimeter is equal to $2a+2c$

Similarly, the third perimeter will be equal to $2b+2c$

$$2a+2b=12\Rightarrow a+b=6\\

2a+2c=16\Rightarrow a+c=8\\

2b+2c=24\Rightarrow b + c = 12$$

$\quad\qquad a+b=\ 6\\

\underline{+\ \quad\quad a+c=\ 8\ \ }\\

\quad 2a+b+c=14$

$\quad 2a+b+c=14\\

\underline{-\ \quad\quad b+c=12\ \ }\\

\quad \qquad\quad \ 2a=\ 2$

$\therefore a=1$

So $b=5$, $c=7$, volume $=1\times5\times7=35\text{cm}^3$

$a+b=6\Rightarrow b=6-a\\

a+c=8\Rightarrow c=8-a\\

\begin{align}b + c = 12\Rightarrow &(6-a)+(8-a)=12\\

\Rightarrow &14-2a=12\\

\Rightarrow &a=1\end{align}$

So $b=5$, $c=7$, volume $=1\times5\times7=35\text{cm}^3$

$\quad\qquad a+b=\ 6\\

\qquad\quad a+c=\ 8\\

\underline{+\ \quad\quad b+c=12\ \ }\\

\ \ \ 2a+2b+2c=26$

$\therefore a+b+c=13$

$c=13-6=7$

$b=13-8=5$

$a=13-12=1$

So the volume is $1\times5\times7=35\text{cm}^3$.

You can find more short problems, arranged by curriculum topic, in our short problems collection.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?