You may also like

Not a Polite Question

When asked how old she was, the teacher replied: My age in years is not prime but odd and when reversed and added to my age you have a perfect square...

Whole Numbers Only

Can you work out how many of each kind of pencil this student bought?

The Patent Solution

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

Double Digit

Age 11 to 14
Challenge Level

Everyone said correctly that the answer will always be $11$. Many of you also managed to justify this using algebra. The first to do sowas Stephen from Singapore International School. His solution went along the following lines:

Let single numbers $x$ and $y$ represent our digits. Then our two digit numbers will be $10x + y$ and $10y + x$.

For example, if $x=1$ and $y=2$, our two digit numbers are $12 = 10\times 1 + 2$ and $21 = 10\times 2 + 1$. Now $12 + 21 = 10\times 1 + 2 + 10\times 2 + 1 = 11\times 1 + 11\times 2$. So $$\frac{12+21}{1+2} = \frac{11\times 1 + 11\times 2}{1+2} = \frac{11\times 3}{3} = 11$$ In general, the sum of our two digit numbers will be $(10x + y) + (10y + x) = 11x +11y$ and this sum divided by $x+y$ will be 11.

Patrick from Woodbridge School extended the problem to three digits in the following way:

Suppose we pick three digits, say $2$, $3$ and $7$. Then we construct the six three digit numbers from our digits - in our case $237$, $273$, $327$, $372$, $723$ and $732$. If we add these numbers together and divide by $2+3+7$ we get $222$. Try this with your own set of digits. Can you explain what is happening?

Patrick then extended the problem in the same way to four digits. Investigate further.