You may also like

A Problem of Time

Consider a watch face which has identical hands and identical marks for the hours. It is opposite to a mirror. When is the time as read direct and in the mirror exactly the same between 6 and 7?

Fit for Photocopying

Explore the relationships between different paper sizes.

Coloured Black

An ink stamp draws out a shape when it is rotated. What is its area?

Back in Time

Age 14 to 16 Short
Challenge Level

The only digits which will appear the same when reflected in the glass table-top are $0, 1, 3,$ and $8$. So it it necessary to find the number of times in a $24$-hour period that the display on the clock is made up only of these digits.

There are two possibilities for the first digit: $0$ or $1$.
There are four possibilities for the second digit: $0$, $1$, $3$ or $8$.
There are three possibilities for the third digit: $0$, $1$ or $3$.
There are four possibilities for the fourth digit: $0$, $1$, $3$ or $8$.

To find the total number of possible times, we can multiply together the number of possibilities for each digit.

Therefore the display and its reflection give the same time on
$2 \times 4 \times 3 \times 4 =96$ occasions

This problem is taken from the UKMT Mathematical Challenges.
You can find more short problems, arranged by curriculum topic, in our short problems collection.