Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The clues for this Sudoku are the product of the numbers in adjacent squares.

There are lots of different methods to find out what the shapes are worth - how many can you find?

Use the differences to find the solution to this Sudoku.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

How many different symmetrical shapes can you make by shading triangles or squares?

Can you describe this route to infinity? Where will the arrows take you next?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

A jigsaw where pieces only go together if the fractions are equivalent.

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Can you find the area of a parallelogram defined by two vectors?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?