An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.
Different combinations of the weights available allow you to make different totals. Which totals can you make?
Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?
Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?
Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.
Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.
Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?
There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?
How many solutions can you find to this sum? Each of the different letters stands for a different number.
How many winning lines can you make in a three-dimensional version of noughts and crosses?
On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?
Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?
Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?
If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?
My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?
If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?
Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?
How many different symmetrical shapes can you make by shading triangles or squares?
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?
Investigate how you can work out what day of the week your birthday will be on next year, and the year after...
Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?
Explore the effect of combining enlargements.
Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.
Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?
Can you describe this route to infinity? Where will the arrows take you next?
Explore the effect of reflecting in two parallel mirror lines.
If you move the tiles around, can you make squares with different coloured edges?
Which set of numbers that add to 10 have the largest product?
Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?
A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.
A jigsaw where pieces only go together if the fractions are equivalent.
The clues for this Sudoku are the product of the numbers in adjacent squares.
What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?
Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?
Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
Can all unit fractions be written as the sum of two unit fractions?
Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?
Do you know a quick way to check if a number is a multiple of two? How about three, four or six?
A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .
Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...
An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?
Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?
The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?
How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?
Is there an efficient way to work out how many factors a large number has?
Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.