The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

A jigsaw where pieces only go together if the fractions are equivalent.

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What is the same and what is different about these circle questions? What connections can you make?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?