Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Use the differences to find the solution to this Sudoku.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

How many different symmetrical shapes can you make by shading triangles or squares?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Can you describe this route to infinity? Where will the arrows take you next?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Explore the effect of combining enlargements.

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?