A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Substitute -1, -2 or -3, into an algebraic expression and you'll get three results. Is it possible to tell in advance which of those three will be the largest ?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many different symmetrical shapes can you make by shading triangles or squares?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Which of these games would you play to give yourself the best possible chance of winning a prize?

If you move the tiles around, can you make squares with different coloured edges?

Can you describe this route to infinity? Where will the arrows take you next?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two parallel mirror lines.

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Can all unit fractions be written as the sum of two unit fractions?

If a sum invested gains 10% each year how long before it has doubled its value?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

A jigsaw where pieces only go together if the fractions are equivalent.

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.