Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Use the differences to find the solution to this Sudoku.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

How many different symmetrical shapes can you make by shading triangles or squares?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Can you maximise the area available to a grazing goat?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

If you move the tiles around, can you make squares with different coloured edges?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

Explore the effect of combining enlargements.

Can you work out how to produce different shades of pink paint?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Can you find rectangles where the value of the area is the same as the value of the perimeter?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?