Can you see how to build a harmonic triangle? Can you work out the next two rows?

Can all unit fractions be written as the sum of two unit fractions?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

A jigsaw where pieces only go together if the fractions are equivalent.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Which set of numbers that add to 10 have the largest product?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you find the area of a parallelogram defined by two vectors?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

If a sum invested gains 10% each year how long before it has doubled its value?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

If you move the tiles around, can you make squares with different coloured edges?

Explore the effect of combining enlargements.

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?