This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Which set of numbers that add to 10 have the largest product?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you find the area of a parallelogram defined by two vectors?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

If a sum invested gains 10% each year how long before it has doubled its value?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

What is the same and what is different about these circle questions? What connections can you make?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Explore the effect of combining enlargements.

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.