On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

How many different symmetrical shapes can you make by shading triangles or squares?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

If you move the tiles around, can you make squares with different coloured edges?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Can you maximise the area available to a grazing goat?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Explore the effect of combining enlargements.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A jigsaw where pieces only go together if the fractions are equivalent.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Is there an efficient way to work out how many factors a large number has?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you work out how to produce different shades of pink paint?