You may also like

problem icon

Route to Root

A sequence of numbers x1, x2, x3, ... starts with x1 = 2, and, if you know any term xn, you can find the next term xn+1 using the formula: xn+1 = (xn + 3/xn)/2 . Calculate the first six terms of this sequence. What do you notice? Calculate a few more terms and find the squares of the terms. Can you prove that the special property you notice about this sequence will apply to all the later terms of the sequence? Write down a formula to give an approximation to the cube root of a number and test it for the cube root of 3 and the cube root of 8. How many terms of the sequence do you have to take before you get the cube root of 8 correct to as many decimal places as your calculator will give? What happens when you try this method for fourth roots or fifth roots etc.?

problem icon

Divided Differences

When in 1821 Charles Babbage invented the `Difference Engine' it was intended to take over the work of making mathematical tables by the techniques described in this article.

problem icon


A geometry lab crafted in a functional programming language. Ported to Flash from the original java at


Age 16 to 18 Challenge Level:

Xn nwj kpv gmpl ipxa, lmat swcm! Ipxa hwgb dn rqeptz xa riattl p xdtniaxwiqmiqr kxxwmg. Ndz tfpuetta aqzm ipxa dvt exbw i zmnedzs wu ttvvbw blw, xb'h xdahqqtt bd adtkm xb qg wicl ychb iznqco ewhaxjxtxbxmh. Pdetdtz, lqip p tdvvmg stglwgl ipxa vmia kmgg wigl. Iptzt igm bwgm hwepxaiqriims btkwvxyjmh, wcm dn lpxkw qh kptams Spaxazq tfpuxvpbxwc. Bwqh qcddtkmh tdwzqco uwg ztxtiims ttbimga xv ipt kxxwmgbtfi. Qi'a aqzmag ippb ipt vjuqmg wu ttbimga xvqmietmc bwmhm gmempbh qh i bcabxxam dn ipt stglwgl amcoip. Awds pb lqzqemsqp ndz bwgm xvuwgupbxwc! Jn bwm lin, qu gdc sqsv'i edzz qi wjb, ipt xgmkqdch kxxwmg epa p stglwgl hcqaiqiciqdv rqeptz lqip zmnedzs stglwgl. Hw uig, et'dt wctn kdvhqsmgms ajjhbxbjbxwc kxxwmga, qci bwmgm pzt wiptz ptimgvpbxdta. Lm rwjts ndz tfpuett ztwgltz ipt kxxwmgbtfi.