You may also like

problem icon

Rotating Triangle

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

problem icon

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

problem icon

Russian Cubes

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

L-triominoes

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A triomino is a shape made from three squares. Here is an L-triomino:

Here is a size 2 L-triomino:
double sized L-triomino
It can be tiled with four size 1 L-triominoes:
size 2 triomino tiled

 
Can you work out how to use the tiling of a size 2 L-triomino to help you to tile a size 4 L-triomino? Click here for a hint.

Devise a convincing argument that you will be able to tile a size 8, 16, 32... $2^n$ L-triomino using size 1 L-triominoes.
 
How many size 1 L-triominoes would you need to tile a size 8... 16... 32... $2^n$ L-triomino? 
  
 
What about odd sized L-triominoes? The diagram below shows the region which needs to be tiled to turn a size 1 L-triomino into a size 3 L-triomino.
 Size 1 to size 3
Can you find a quick way of tiling the region, using combinations of the 'building blocks' below?
 
2 by 3 rectangle and size 2 triomino

In the same way, can you find a way of adding to your size 3 tiling to tile a size 5? Then a size 7, 9, 11...? Click here for a hint.
Devise a convincing argument that you will be able to tile any odd sized L-triomino using size 1 L-triominoes. 
 
Combine your ideas to produce a convincing argument that ANY size of L-triomino can be tiled.