Challenge Level

Triangle $ABC$ has altitudes $h_1$, $h_2$ and $h_3$.

The radius of the inscribed circle is $r$, while the radii of the escribed circles are $r_1$, $r_2$ and $r_3$ respectively.

Prove:

$\begin{equation} \frac{1}{r} = \frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}. \end{equation}$