#### You may also like

This comes in two parts, with the first being less fiendish than the second. Itâ€™s great for practising both quadratics and laws of indices, and you can get a lot from making sure that you find all the solutions. For a real challenge (requiring a bit more knowledge), you could consider finding the complex solutions.

### Discriminating

You're invited to decide whether statements about the number of solutions of a quadratic equation are always, sometimes or never true.

This will encourage you to think about whether all quadratics can be factorised and to develop a better understanding of the effect that changing the coefficients has on the factorised form.

# Irrational Roots

##### Age 16 to 18Challenge Level

This resource is from Underground Mathematics.

The roots of quadratic polynomials can be nice, integer values. For example $x^2+4x+3$ has $x=-3$ as a root. However, this is not always the case. You will have encountered many quadratic polynomials with roots that are fractions or even irrational numbers.

Convince yourself that $x=\sqrt{2}$ is a root of the quadratic equation $x^2-2=0$ and that $x=\sqrt{3}$ is a root of the quadratic equation $x^2-3=0$.

• Can you find a quadratic polynomial with integer coefficients which has $x=1+\sqrt{2}$ as a root?

What is the other root of this polynomial?

• What if instead $x=1+\sqrt{3}$ is a root? What would the quadratic polynomial be now?

What would the other root be this time?

• Can you generalise your answers to the case where $1+\sqrt{n}$ is a root?

What about the case where $m+\sqrt{n}$ is a root?

This is an Underground Mathematics resource.

Underground Mathematics is hosted by Cambridge Mathematics. The project was originally funded by a grant from the UK Department for Education to provide free web-based resources that support the teaching and learning of post-16 mathematics.

Visit the site at undergroundmathematics.org to find more resources, which also offer suggestions, solutions and teacher notes to help with their use in the classroom.