There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A tool for generating random integers.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use Excel to investigate the effect of translations around a number grid.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A collection of our favourite pictorial problems, one for each day of Advent.

Here is a chance to play a fractions version of the classic Countdown Game.

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

Use Excel to explore multiplication of fractions.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Use an Excel spreadsheet to explore long multiplication.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A metal puzzle which led to some mathematical questions.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

The classic vector racing game brought to a screen near you.

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

An Excel spreadsheet with an investigation.

An environment that enables you to investigate tessellations of regular polygons

Match pairs of cards so that they have equivalent ratios.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

Prove Pythagoras Theorem using enlargements and scale factors.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

A group of interactive resources to support work on percentages Key Stage 4.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.