Search by Topic

Resources tagged with Circles similar to Blue and White:

Filter by: Content type:
Stage:
Challenge level:

There are 62 results

Broad Topics > 2D Geometry, Shape and Space > Circles

Blue and White

Stage: 3 Challenge Level:

Identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

Bull's Eye

Stage: 3 Challenge Level:

What fractions of the largest circle are the two shaded regions?

F'arc'tion

Stage: 3 Challenge Level:

At the corner of the cube circular arcs are drawn and the area enclosed shaded. What fraction of the surface area of the cube is shaded? Try working out the answer without recourse to pencil and. . . .

The Pillar of Chios

Stage: 3 Challenge Level:

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Curvy Areas

Stage: 4 Challenge Level:

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

A Chordingly

Stage: 3 Challenge Level:

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Squaring the Circle

Stage: 3 Challenge Level:

Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make. . . .

Pie Cuts

Stage: 3 Challenge Level:

Investigate the different ways of cutting a perfectly circular pie into equal pieces using exactly 3 cuts. The cuts have to be along chords of the circle (which might be diameters).

The Pi Are Square

Stage: 3 Challenge Level:

A circle with the radius of 2.2 centimetres is drawn touching the sides of a square. What area of the square is NOT covered by the circle?

Coins on a Plate

Stage: 3 Challenge Level:

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Semi-square

Stage: 4 Challenge Level:

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

An Unusual Shape

Stage: 3 Challenge Level:

Can you maximise the area available to a grazing goat?

Intersecting Circles

Stage: 3 Challenge Level:

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Semi-detached

Stage: 4 Challenge Level:

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Square Pegs

Stage: 3 Challenge Level:

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Floored

Stage: 3 Challenge Level:

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

Stage: 4 Challenge Level:

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Partly Circles

Stage: 4 Challenge Level:

What is the same and what is different about these circle questions? What connections can you make?

Pi, a Very Special Number

Stage: 2 and 3

Read all about the number pi and the mathematicians who have tried to find out its value as accurately as possible.

Crescents and Triangles

Stage: 4 Challenge Level:

Triangle ABC is right angled at A and semi circles are drawn on all three sides producing two 'crescents'. Show that the sum of the areas of the two crescents equals the area of triangle ABC.

Efficient Cutting

Stage: 3 Challenge Level:

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

Squaring the Circle and Circling the Square

Stage: 4 Challenge Level:

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Circles, Circles Everywhere

Stage: 2 and 3

This article for pupils gives some examples of how circles have featured in people's lives for centuries.

Salinon

Stage: 4 Challenge Level:

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Angle A

Stage: 3 Challenge Level:

The three corners of a triangle are sitting on a circle. The angles are called Angle A, Angle B and Angle C. The dot in the middle of the circle shows the centre. The counter is measuring the size. . . .

Stage: 4 Challenge Level:

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

Three Four Five

Stage: 4 Challenge Level:

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Get Cross

Stage: 4 Challenge Level:

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

Tied Up

Stage: 3 Challenge Level:

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

Not So Little X

Stage: 3 Challenge Level:

Two circles are enclosed by a rectangle 12 units by x units. The distance between the centres of the two circles is x/3 units. How big is x?

Stage: 4 Challenge Level:

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the. . . .

Rolling Around

Stage: 3 Challenge Level:

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Some(?) of the Parts

Stage: 4 Challenge Level:

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Three Tears

Stage: 4 Challenge Level:

Construct this design using only compasses

Efficient Packing

Stage: 4 Challenge Level:

How efficiently can you pack together disks?

Arclets Explained

Stage: 3 and 4

This article gives an wonderful insight into students working on the Arclets problem that first appeared in the Sept 2002 edition of the NRICH website.

First Forward Into Logo 4: Circles

Stage: 2, 3 and 4 Challenge Level:

Learn how to draw circles using Logo. Wait a minute! Are they really circles? If not what are they?

LOGO Challenge 11 - More on Circles

Stage: 3 and 4 Challenge Level:

Thinking of circles as polygons with an infinite number of sides - but how does this help us with our understanding of the circumference of circle as pi x d? This challenge investigates. . . .

LOGO Challenge 12 - Concentric Circles

Stage: 3 and 4 Challenge Level:

Can you reproduce the design comprising a series of concentric circles? Test your understanding of the realtionship betwwn the circumference and diameter of a circle.

LOGO Challenge - Circles as Animals

Stage: 3 and 4 Challenge Level:

See if you can anticipate successive 'generations' of the two animals shown here.

A Rational Search

Stage: 4 and 5 Challenge Level:

Investigate constructible images which contain rational areas.

Stage: 2, 3 and 4 Challenge Level:

A metal puzzle which led to some mathematical questions.

What Is the Circle Scribe Disk Compass?

Stage: 3 and 4

Introducing a geometrical instrument with 3 basic capabilities.

LOGO Challenge 10 - Circles

Stage: 3 and 4 Challenge Level:

In LOGO circles can be described in terms of polygons with an infinite (in this case large number) of sides - investigate this definition further.

Round and Round

Stage: 4 Challenge Level:

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Stage: 4 Challenge Level:

The sides of a triangle are 25, 39 and 40 units of length. Find the diameter of the circumscribed circle.

Illusion

Stage: 3 and 4 Challenge Level:

A security camera, taking pictures each half a second, films a cyclist going by. In the film, the cyclist appears to go forward while the wheels appear to go backwards. Why?

Circumspection

Stage: 4 Challenge Level:

M is any point on the line AB. Squares of side length AM and MB are constructed and their circumcircles intersect at P (and M). Prove that the lines AD and BE produced pass through P.

Rotating Triangle

Stage: 3 and 4 Challenge Level:

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Pericut

Stage: 4 and 5 Challenge Level:

Two semicircle sit on the diameter of a semicircle centre O of twice their radius. Lines through O divide the perimeter into two parts. What can you say about the lengths of these two parts?