First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Show there are exactly 12 magic labellings of the Magic W using the numbers 1 to 9. Prove that for every labelling with a magic total T there is a corresponding labelling with a magic total 30-T.

Can you find the area of a parallelogram defined by two vectors?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Can you make sense of these three proofs of Pythagoras' Theorem?

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Relate these algebraic expressions to geometrical diagrams.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Fifteen students had to travel 60 miles. They could use a car, which could only carry 5 students. As the car left with the first 5 (at 40 miles per hour), the remaining 10 commenced hiking along the. . . .

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

Show that all pentagonal numbers are one third of a triangular number.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Three semi-circles have a common diameter, each touches the other two and two lie inside the biggest one. What is the radius of the circle that touches all three semi-circles?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Can you find a rule which connects consecutive triangular numbers?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

My train left London between 6 a.m. and 7 a.m. and arrived in Paris between 9 a.m. and 10 a.m. At the start and end of the journey the hands on my watch were in exactly the same positions but the. . . .