You may also like

problem icon

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

problem icon

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

problem icon

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Perfectly Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

We are first given that: $$x_1 = 2^2 + 3^2 + 6^2$$ $$x_2 = 3^2 + 4^2 + 12^2$$ $$x_3 = 4^2 + 5^2 + 20^2$$ Then show that $x_n$ is always a perfect square.