Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Show that all pentagonal numbers are one third of a triangular number.

Can you find a rule which connects consecutive triangular numbers?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you describe this route to infinity? Where will the arrows take you next?

Can you find a rule which relates triangular numbers to square numbers?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Square It game for an adult and child. Can you come up with a way of always winning this game?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Imagine a rectangular tray lying flat on a table. Suppose that a plate lies on the tray and rolls around, in contact with the sides as it rolls. What can we say about the motion?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

In this problem we see how many pieces we can cut a cube of cheese into using a limited number of slices. How many pieces will you be able to make?

Takes you through the systematic way in which you can begin to solve a mixed up Cubic Net. How close will you come to a solution?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Use the diagram to investigate the classical Pythagorean means.

If all the faces of a tetrahedron have the same perimeter then show that they are all congruent.

In a three-dimensional version of noughts and crosses, how many winning lines can you make?