Double Trouble

Simple additions can lead to intriguing results...
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem

Double Trouble printable worksheet

 

Charlie has been adding fractions in the sequence $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ where each fraction is half the previous one:

$$\frac{1}{2} + \frac{1}{4} $$ $$\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$ $$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16}$$

Work out the answers to Charlie's sums. What do you notice?

Will the pattern continue?

How do you know?

Try writing an expression for $$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$

Could you convince someone else that your expression is correct for all values of $n$?

Charlie drew a diagram to try to explain what was going on:

 

Use Charlie's diagram to explain why $$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1-\frac{1}{2^n} = \frac{2^n-1}{2^n}$$

Alison has been adding numbers in the sequence $1, 2, 4, 8, \dots$ where each number is twice the previous one:

$$1 + 2$$ $$1 + 2 + 4$$ $$1 + 2 + 4 + 8$$

Work out the answers to Alison's sums. What do you notice?

Will the pattern continue?

How do you know?

Try writing an expression for $$1 + 2 + 4 + \dots + 2^n$$

Could you convince someone else that your expression is correct for all values of $n$?

Alison drew a diagram to try to explain what was going on:

 

Can you use Alison's diagram to explain why $$1 + 2 + 4 + \dots + 2^n = 2^{n+1}-1$$