Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

To avoid losing think of another very well known game where the patterns of play are similar.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you describe this route to infinity? Where will the arrows take you next?

For any right-angled triangle find the radii of the three escribed circles touching the sides of the triangle externally.

If all the faces of a tetrahedron have the same perimeter then show that they are all congruent.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Square It game for an adult and child. Can you come up with a way of always winning this game?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Show that all pentagonal numbers are one third of a triangular number.

Can you find a rule which relates triangular numbers to square numbers?

Can you find a rule which connects consecutive triangular numbers?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

A triangle PQR, right angled at P, slides on a horizontal floor with Q and R in contact with perpendicular walls. What is the locus of P?

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Two intersecting circles have a common chord AB. The point C moves on the circumference of the circle C1. The straight lines CA and CB meet the circle C2 at E and F respectively. As the point C. . . .

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design. Coins inserted into the machine slide down a chute into the machine and a drink is duly. . . .

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Small circles nestle under touching parent circles when they sit on the axis at neighbouring points in a Farey sequence.

What can you see? What do you notice? What questions can you ask?

Use the diagram to investigate the classical Pythagorean means.