Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Beautiful mathematics. Two 18 year old students gave eight different proofs of one result then generalised it from the 3 by 1 case to the n by 1 case and proved the general result.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

An article which gives an account of some properties of magic squares.

Can you work out the irrational numbers that belong in the circles to make the multiplication arithmagon correct?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Can you find the values at the vertices when you know the values on the edges?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

You can differentiate and integrate n times but what if n is not a whole number? This generalisation of calculus was introduced and discussed on askNRICH by some school students.

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.