Triangle in a Trapezium
Can you find and prove the relationship between the area of a trapezium and the area of a triangle constructed within it?
Can you find and prove the relationship between the area of a trapezium and the area of a triangle constructed within it?
Can you make sense of these three proofs of Pythagoras' Theorem?
Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and knot arithmetic.
Investigate how networks can be used to solve a problem for the 18th Century inhabitants of Konigsberg.
Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated.
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 × 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural numbers.
Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.
In how many different ways can I colour the five edges of a pentagon so that no two adjacent edges are the same colour?